>>最受欢迎的情感词典,欢迎点击下载!<<
研究方向
学术报告
资源下载
当前位置: 首页>>新闻动态>>正文
    硕士生于迩晨关于仇恨模因检测的研究成果被COLING2025录用
    2024-12-06 12:54 卢俊宇 

    近日,2025年国际计算语言学会议(COLING 2025)公布了录用论文列表,硕士生于迩晨关于仇恨模因检测的研究成果被录用为长文。国际计算语言学大会(International Conference on Computational LinguisticsCOLING),是自然语言处理和计算语言学领域的重要国际学术会议,被CCF推荐为B类会议。

    题目:HyperPrompt: A Hypergraph-based Prompting Fusion Model for Multimodal Hate DetectionHyperPrompt: 基于超图的多模态仇恨检测提示融合模型)

    摘要:Multimodal hate detection aims to identify hate content across multiple modalities for promoting a harmonious online environment. Despite promising progress, three critical challenges, the absence of implicit hateful cues, the cross-modal-induced hate, and the diversity of hate target groups, inherent in the multimodal hate detection task, have been overlooked. To address these challenges, we propose a hypergraph-based prompting fusion model. Our model first uses tailored prompts to infer implicit hateful cues. It then introduces hyperedges to capture cross-modal-induced hate and applies a diversity-oriented hyperedge expansion strategy to account for different hate target groups. Finally, hypergraph convolution fuses diverse hateful cues, enhancing the exploration of cross-modal hate and targeting specific groups. Experimental results on two benchmark datasets show that our model achieves state-of-the-art performance in multimodal hate detection.

    多模态仇恨检测旨在识别跨多种模态的仇恨内容,以促进和谐的网络环境。尽管已经取得了一些有前景的进展,但多模态仇恨检测任务中固有的三个关键挑战,即隐含仇恨线索的缺失跨模态引发的仇恨以及仇恨目标群体的多样性,一直被忽视。为应对这些挑战,我们提出了一种基于超图的提示融合模型。我们的模型首先使用定制的提示来推断隐含的仇恨线索。然后引入超边来捕捉跨模态引发的仇恨,并应用一种面向多样性的超边扩展策略来考虑不同的仇恨目标群体。最后,通过超图卷积融合各种仇恨线索,加强对跨模态仇恨的探索以及针对特定群体的检测。在两个基准数据集上的实验结果表明,我们的模型在多模态仇恨检测方面达到了最先进的性能。




    关闭窗口